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Compressive sensing (CS) is a framework in which one attempts to measure a signal in a
compressive mode, implying that fewer total measurements are required vis à vis direct
sampling methods. Compressive sensing exploits the fact that the signal of interest is com-
pressible in some basis, and the CS measurements correspond to projections (typically ran-
dom projections) performed on the basis function coefficients. In this paper, we
demonstrate that ideas from compressive sensing may be exploited in the context of elec-
tromagnetic modeling, here multi-static scattering from an arbitrary target. In this context,
the computational analysis may be viewed as a numerical experiment, and ideas from
compressive sensing may be used to reduce the number of computations required for tar-
get characterization. It is demonstrated that the compressive sensing framework may be
applied with relatively minor modifications to many existing numerical models, with
examples presented here for a fast-multipole computational engine.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the 1990s there were significant developments on the sparse representation of digital signals in terms of orthonormal
basis functions. For example, assume that one is interested in representing the m-dimensional complex signal u in terms of a
basis, of the form u ¼ Wh, where W is an m�m matrix and h represents an m-dimensional column vector; the columns of W
represent the m orthonormal basis vectors. For most natural signals u (characterized by being piecewise smooth), the wave-
let transform [1,2] has been shown to yield a particularly sparse representation. Specifically, if h represents the wavelet coef-
ficients for a piecewise smooth signal u, then the error kh� hNk2

2 has been shown to decay quickly with increasing N, where
hN represents h with the smallest m� N coefficients set to zero. This implies that only a small number N of dominant wavelet
coefficients are required to approximate u well. This property of wavelets has led to a new generation of wavelet-based com-
pression algorithms, for both imagery and video [3,4]. Importantly, since the N dominant wavelet coefficients are a strong
function of the signal u of interest, the aforementioned compression algorithms must adapt to u. In addition, we note that
the discrete cosine transform (DCT) is at the heart of JPEG compression [5], which is currently the industry compression stan-
dard; this is because most images (and video) are highly compressible in a DCT basis.

While wavelet and DCT-based compression and sparse signal representations have had many important practical appli-
cations, in the context of sensing there are issues worthy of further research. For example, in the above discussion it was
noted that for a compressing basis the m� N smallest transform coefficients may be discarded with minimal degradation
to the reconstruction of u (i.e., kh� hNk2

2 decreases quickly as N increases). However, in the context of sensing, one must first
measure the m-dimensional digital signal u, represent it in the basis W, and then compression is performed subsequently,
after which effectively hN is retained. Consequently, in some sense m� N pieces of data in the original u were measured
. All rights reserved.
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unnecessarily. Compressive sensing (CS)1 [6–8] is a new approach to data collection, seeking to integrate sensing and compres-
sion and therefore measure the informative part of the signal directly. The above discussion was placed in the context of wave-
lets and the DCT, while CS is applicable to any basis or frame W in which the signal of interest u may be sparsely rendered [6–8].

There are several ‘‘surprising” aspects of compressive sensing [8]. First, in the above discussion it was noted that the larg-
est N coefficients hN are a strong function of the signal u, and the approximation to u based on hN yields a good representation
with N � m. Therefore, one may anticipate that the CS measurements should be performed adaptively, with the system
‘‘homing in” in some sense on the dominant coefficients hN . A surprising aspect of CS is that one does not attempt to measure
the dominant coefficients hN; rather, a weighted combination of all transform coefficients h are measured. Another surprising
aspect of CS is that one may expect that the aforementioned weights should adapt to the signal under test; however, CS the-
ory indicates that a fixed set of weights may be used for all u within a given class, and that the quality of the CS estimate of u,
based on these measurements, will not be significantly worse than the best adaptive measurements. A set of n CS measure-
ments may be represented as v ¼ Uh, where U is an n�m projection matrix. One additional ‘‘surprise” is that the compo-
nents of U may be constituted as draws from a general underlying random variable. Summarizing, (i) in CS measurements
one does not directly measure u, but measures u (or, equivalently, h) projected onto a random signal, and n such random
projections constitute the n-dimensional CS measurement vector v; (ii) the particular n projection vectors may be consti-
tuted randomly, and are fixed for all u; (iii) one may use CS inversion techniques to approximate u accurately based on
the measurements v, with several techniques available for this inversion [9–11,7,12–14].

In this paper, we address the concept of using compressive sensing for numerical electromagnetic scattering computa-
tions. When performing such a scattering analysis, one typically must solve a complex matrix equation of the form Zi ¼ e,
where Z may represent an ‘‘impedance” matrix, i is a column vector of induced currents, and e is a column vector represent-
ing the excitation (for example, any algorithm in the general form of the method of moments [15] falls into this category,
with the recently developed fast-multipole method constituting an important modern example [16–18]). Assume that
one is interested in performing a multi-static scattering analysis at a fixed frequency, as a function of the incidence and scat-
tering angles (e.g, in two dimensions, with the signal of interest u being the scattered fields as a function of angles /i and /s).
When considering plane wave excitation, each incident angle /i corresponds to a distinct e, and the associated computed
induced current i is then used to compute the scattered fields [15] at all angles /s. In almost all previous analyses researchers
have considered excitations e corresponding to a plane wave, and for each such excitation the computed i is then employed
to compute the scattered fields individually at all angles /s.

As indicated above, the data u of interest is the complex ‘‘image” of multi-static scattered fields, with two axes corre-
sponding to /i and /s (for a fixed frequency). The computation of u for a given target is often a computationally challenging
task, particularly as the target increases in size relative to wavelength (this problem having motivated the work in [16–18],
as well as other ‘‘fast” computational engines). The challenge is that when plane wave excitation is considered, the number of
different incident angles /i that must be considered is relatively large, and for each there is a need to constitute and solve a
large matrix equation Zi ¼ e. As discussed further below, and as required for a compressive sensing analysis, a multi-static
scattering image such as u is typically highly compressible within an appropriate orthonormal basis W (e.g. the DCT). Based
on this, one may view the computation of u as a computational sensing challenge, for a target of interest. Rather than applying
compressive sensing to a physical sensing challenge, we will here apply it to a numerical sensing problem (computation of
multi-static scattered fields). Specifically, rather than considering one set of excitation and scattering angles at a time, we
will consider a linear combination of all excitation and scattering angles simultaneously. The linear weights will be consti-
tuted as draws from a random process. We will demonstrate that this compressive sensing form of electromagnetic scatter-
ing computations may be implemented with minor modification to existing computational engines (e.g. [16–18]), while
providing computational acceleration (fewer total computations required to attain the same scattering data). In this manner,
the numerical model is used to directly compute the compressive data v, and then CS inversion [9–11,7,12–14], is employed
to recover the desired data u.

The remainder of the paper is organized as follows. In Section 2, we provide a concise summary of compressive
sensing theory, and in Section 3 we demonstrate how complex scattering physics may be employed to achieve
projection-based measurements that are appropriate for CS. In Section 4, we consider a very practical application, with
these ideas used as a tool for accelerating numerical multi-static scattering analyses. Example scattering results using com-
pressive sensing applied to fast-multipole [16–18] analyses are presented in Section 5. Conclusions of this work are
discussed in Section 6.

2. Review of compressive sensing theory

The field of compressive sensing was started by Candès et al. [7] by considering signals that are sparse in the Fourier do-
main, with this generalized subsequently by Candès and Tao [19] to signals that are sparse in general bases or frames. Don-
oho [8] developed further results along these lines. In the wave problem of interest here, we will be considering complex
signals u. The first paper in this field [7] considered complex signals, while [20] considered real signals and possibly complex
projections. Other papers in this field [8,19] have focused exclusively on real signals. However, it is noted in [19] that the
1 All compressive sensing preprints in the list of references may be downloaded from http://www.dsp.ece.rice.edu/cs/.
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theory extends directly to complex signals, except for negligible changes to some of the constants in the performance anal-
yses. Consequently, in the discussion that follows we consider compressive sensing in the context of complex signals u.

2.1. Sparsity

In the discussion below we adopt notation introduced by Donoho [8]. Consider a class U of m-dimensional complex sig-
nals. An information operator In maps any member of U to an n-dimensional complex vector, In : U ! Cn. The information
operator is of the form
InðuÞ ¼ ðhn1; ui; . . . ; hnn;uiÞ; ð1Þ
where hni;ui is an inner product and ni are sampling vectors (hni;ui ¼ nH
i u, where superscript H represents the complex trans-

pose). We let An represent an algorithm that operates on the n-dimensional signal measured by the information operator In,
and An attempts to reconstruct u;An : Cn ! Cm; the characteristics of such an algorithm are discussed below.

If the m-dimensional signals in U have special properties, u may be recovered accurately even when the number of mea-
surements n� m, this yielding the terminology ‘‘compressive sensing”. The exploitation of known constraints on the prop-
erties of signals in U may be viewed as a regularization of the mapping An : Cn ! Cm. In compressive sensing (CS) one exploits
the fact that most natural signals u are compressible in an appropriate orthonormal basis, for example a wavelet [1,2], local
Fourier [2], or DCT [5] basis. The original goal of CS was to directly measure the informative part of the signal u, such that the
total number of samples that must be measured may be reduced substantially, potentially simplifying the hardware prop-
erties of the sensor digitization system. In this context, the measurements are themselves directly performed in a compres-
sive mode. In this paper we extend these ideas to reduce the number of computations required for a numerical multi-static
scattering analysis.

Focusing now on sparsity, let fwigi¼1;m represent an orthonormal basis for m-dimensional signals, and therefore for u 2 U
we have u ¼

Pm
i¼1hiwi, with hi � hu;wii. The set U is termed compressible if for all u 2 U
khkp �
X

i

jhijp
 !1=p

6 R ð2Þ
for some 0 < p < 2 and for some R > 0. The case p ¼ 1 corresponds to the well-known sparseness promotion employed with-
in a Laplacian [21] distribution in Bayesian analysis, or ‘1 regularization [7,8] resulting from an associated maximum a pos-
teriori analysis [21]. As p gets smaller the signals must be more sparse to satisfy (2) for a given R.
2.2. Random construction of information operator In

The signal u may be expressed as a column vector u ¼ Wh, where h is a column vector composed of coefficients fhigi¼1;m

and W is an m�m matrix, the ith column of which is defined by the basis vector wi; the vector u is assumed sparse in the
basis W. The CS measurements may be represented by the n-dimensional column vector v, with v ¼ UWHu. The matrix
resulting from the product UWH is responsible for the n projections; U is an n�m matrix, and the CS measurements may
now be expressed as v ¼ Uh.

A remarkable result proven by Candès and Tao [19] and Donoho [8] is that if the columns of matrix U are generated iid
from an underlying distribution (e.g. Gaussian or Bernoulli) then the process of measuring v and then recovering u is essen-
tially optimal. Specifically, with ‘‘overwhelming probability”, when constituting the projection vectors (rows of U) in such a
random manner, one may recover the underlying signal u with the fewest number of measurements n. This optimality is
manifested in the following sense [19]: By using randomly constituted projection vectors, one requires a near-minimal num-
ber of measurements n to recover the underlying signal u. The required number of projections is n � NlogðmÞ [8], where re-
call that N represents the number of significant transform coefficients (if the signal is highly compressible N � m and
therefore NlogðmÞ � m for large m).

In practice the underlying signal u is recovered as the solution to the convex ‘1 regularized inversion
min
g
khðgÞk‘1

subject to UhðgÞ ¼ v ¼ UhðuÞ: ð3Þ
There have been several algorithms developed to implement this inversion [14,13,9,10,22]. In practice one typically does not
know the appropriate N a priori, and therefore there may be some uncertainty in selecting n. The inversion algorithm in [13]
not only estimates u, but also provides ‘‘error bars”; therefore [13] allows one to adaptively determine an appropriate num-
ber of CS measurements n, based on a preset error criterion on the recovery of u.

2.3. Orthogonal projections and mutual coherence

While randomly constituted projection vectors may be designed as discussed above, there are other constructions of
interest, and of relevance to electromagnetic scattering [23]. For the m-dimensional sparse signal of interest h Candès and
Romberg [20] consider an orthogonal basis B, with BHB ¼ mI, where I is the m�m identity matrix (Candès and Romberg
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[20] chose not to consider a normalized basis for reasons that become apparent below). The basis B may be represented as
B ¼ �W for orthogonal matrix � and with W representing the same sparseness promoting basis as above; an m� 1 complex
measurement vector v is constituted as
y ¼ Bh ¼ �Wh ¼ �u ð4Þ
which is of the same form as for the random projections considered above, but we use the distinct B to underscore that above
U was constituted via draws from an underlying random variable, while B is the product of two bases (� and W); B is also a
square m�m matrix, where U is an n�m matrix, typically with n� m.

Candès and Romberg [20] have demonstrated that if one randomly selects to measure n elements from the vector y, this
now constituting the n� 1 compressive sensing measurement v, and n is sufficiently large, with overwhelming probability
one may recover the underlying signal u using the same class of inversion algorithms as in (3). A proportionality constant on
the required n is
lðBÞ ¼max
i;k
jBikj: ð5Þ
As discussed by Candès and Romberg, the form of lðBÞ has important implications for the desired choice of the basis � . Spe-
cifically, to minimize lðBÞ, and hence minimize the number of compressive sensing measurements n, the measurement vec-
tors (rows of � ) must be ‘‘spread out” in the W domain [20]. For this reason lðBÞ is often referred to as the mutual coherence
and the goal is to design � such that lðBÞ is Oð1Þ.

3. Exploiting complex target excitations for scattering

The principal application in this paper is a demonstration of how CS may be used to accelerate existing numerical electro-
magnetic scattering codes. To do this, rather than considering plane wave excitation on the target, more-sophisticated inci-
dent fields are addressed. Before demonstrating that in Section 5, it is of interest to examine how such excitations may be
manifested in physical systems, by exploiting multiple scattering in a complex environment. This represents an extension
of ideas considered in [23], wherein only radiation (not scattering) was considered. Thus, while the concepts presented here
are applied specifically to scattering computations, they may also be exploited when performing physical measurements.

3.1. Excitation fields

We consider two-dimensional scattering to simplifying notation, although the basic construct extends naturally to three-
dimensional problems. We desire the signal usð/i;/s;qs;xÞ, which represents the scattered fields of a target situated in vac-
uum, with the measurements performed at angular frequency x, due to a plane wave incident at angle /i, with the scattered
fields observed at angle /s. The scattered fields are assumed to be observed in the far-zone, at an arbitrary (large) range qs.
The compressive sensing analysis seeks to recover uð/i;/s;xÞ, which represents the Fourier transform of the currents in-
duced on the target at spectral angle /s, for incident angle /i. The desired usð/i;/s;qs;xÞ may be recovered from
uð/i;/s;xÞ via the free-space Green’s function, and in the far-zone
usð/i;/s;qs;xÞ ¼
expð�jkoqs � jp=4Þ

4p

ffiffiffiffiffiffiffiffiffiffi
2p

koqs

s
uð/i;/s;xÞ: ð6Þ
Concerning notation, uð/i;/s;xÞ represents a complex and continuous function of ð/i;/s;xÞ; when this function is discret-
ized with respect to ð/i;/s;xÞ the corresponding complex vector is represented as u. Similar notation is employed for the
vector of complex CS measurements v. The expression uð/i;/s;xÞ corresponds to the Fourier transform of the currents in-
duced on the target of interest, with /s representing the spectral angle and /i the plane wave angle of incidence.

Rather than performing a scattering analysis in vacuum, we assume that the target is surrounded by a complex propaga-
tion medium. The objective is to exploit the multipath introduced by such an environment to approximate uð/i;/s;xÞ based
on a relatively small number of measurements performed in the presence of the heterogeneities, using ideas from compres-
sive sensing.

In the discussion that follows we assume the aforementioned excitation is a line current, for analytical simplicity, but the
formulation generalizes to arbitrary two-dimensional sources. In addressing the excitation fields, we consider the source
radiating in the presence of the heterogeneous medium, but with the target absent. Specifically, as depicted in Figs. 1 and
2, assume that a contiguous vacuum pocket is surrounded by a heterogeneous propagation environment, and that a line
source excitation is positioned at arbitrary point qe outside the vacuum. As a consequence of the complicated propagation
environment, the fields within the vacuum arrive at a wide range of angles (typically a continuum of angles). Assuming that
the source is operating at frequency x, let gðq; qe;xÞ represent the fields at arbitrary position q within the vacuum pocket
(the coordinate-system origin is at the center of the vacuum); since the source at qe is a line source, gðq; qe;xÞ represents the
associated two-dimensional Green’s function.

We introduce a window function wðq;qt ;qhÞ, with wðjqj 6 qt ;qt;qhÞ ¼ 1;wðjqjP qh;qt ;qhÞ ¼ 0, and for qt 6 jqj 6 qh the
function wðq;qt ;qhÞ tapers to zero in an arbitrary smooth manner (see Fig. 3). The windowed version of the fields within the
vacuum are represented as gwðq; qe;xÞ ¼ gðq; qe;xÞwðq;qt ;qhÞ.



Fig. 1. Schematic of a situated in the presence of a heterogeneous medium. The immediate vicinity of the target is surrounded by vacuum.

Fig. 2. Location of a line source positioned at qe , with the scattered fields observed at qo .

Fig. 3. Depiction of coordinates on window function wðq;qt ;qhÞ.
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The two-dimensional Fourier transform of the windowed fields is defined as
ĝwðu; qe; xÞ ¼
Z 1

0
dq
Z 2p

0
d/qgwðq;/;qe;xÞexp½jkoqcosð/�uÞ� ð7Þ
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with ko ¼ x=c; c is the wave speed in vacuum, u represents the angle of the spectral component, and the range-angle pair
ðq;/Þ define the vector q. Physically, ĝwðu; qe;xÞ represents the amplitude of a plane wave at frequency x ¼ koc propagating
in the direction u, due to the source at qe, and therefore this is the amplitude of the respective plane wave component asso-
ciated with the windowed fields gwðq; qe;xÞ. The frequency x and source position qe are assumed fixed, and therefore
ĝwðu; qe; xÞ is a function of the spectral angle (plane wave propagation direction) u.

Note that for a fixed source, through exploitation of the complex propagation medium, one may effectively constitute
excitation plane waves propagating at a continuum of angles in the region within which the target will reside; by contrast,
in the absence of the heterogeneity a single propagation direction will dominate, for a fixed source location (assuming the
source is distant from the origin).

The windowed source currents may be recovered via an inverse Fourier transform
gwðq;qe;xÞ ¼
ko

4p2

Z 2p

0
duĝwðu;qe;xÞexp½�jkoqcosð/�uÞ� ð8Þ
assuming that there are no evanescent fields in gwðq; qe;xÞ and hence that ĝwðu; qe;xÞ exists in the spectral domain on a
circle of radius ko. The expression in (8) underscores that the spectral form of the source excitation ĝwðu; qe;xÞ is only a func-
tion of the angle u. Thus motivated, it will prove convenient in Section 3.4 to constitute a discretized form of ĝwðu; qe;xÞ,
discretized with respect to the angle u 2 ½0;2p�. Specifically, let nqe

represent an
ffiffiffiffiffi
m
p

dimensional complex column vector,
corresponding to ĝwðu; qe;xÞ uniformly sampled at

ffiffiffiffiffi
m
p

angular points u. The vector nqe
represents the weights of plane

waves incident upon the target due to a source at qe, at an
ffiffiffiffiffi
m
p

-dimensional set of discrete plane wave propagation directions
(angles). Recall that it is assumed that

ffiffiffiffiffi
m
p

is an integer.

3.2. Radiation from induced source

Fields incident upon a scatterer induce currents on the target surface (and/or within the target), and the scattered fields
are radiated by this source, with radiation taking place in the presence of the background medium. Therefore, to consider the
scattering problem, we first address radiation from a general source, radiating from within the vacuum pocket in Fig. 1 (the
target will reside within this region). Specifically, assume that iðq0;xÞ represents a source at frequency x, residing within the
pocket vacuum region, and therefore iðjq0jP qt ;xÞ ¼ 0. Let gðqo; q

0;xÞ represent the Green’s function for a line source lo-
cated at q0, for jq0j 6 qt , and the associated fields are observed at any point qo. The fields at qo due to the source iðq0;xÞ, radi-
ating in the presence of the heterogeneities, may therefore be expressed as
f ðqo;xÞ ¼
Z

dq0
2iðq0;xÞgðqo;q

0;xÞ: ð9Þ
Because of the finite support of the current, we recall the window function wðq;qt ;qhÞ introduced above, and window the
Green’s function as gwðqo; q

0;xÞ ¼ gðqo; q
0;xÞwðq0;qt ;qhÞ. Using Parseval’s theorem, (9) may be expressed as
f ðqo;xÞ ¼
ko

4p2

Z 2p

0
duîðu;xÞĝwðqo;uþ p;xÞ; ð10Þ
where îðu;xÞ and ĝwðqo;u;xÞ are spectral forms of the source current and windowed Green’s function, respectively, defined
similarly to (7), and in (10) it is assumed that the evanescent components of the spectral currents do not contribute to the
fields observed at position qo.

3.3. Scattering from target embedded in heterogeneity

Let uð/i;u;xÞ represent the two-dimensional Fourier transform of the current induced on the target at spectral angle u,
due to a unit-amplitude plane wave incident in vacuum at angle /i and frequency x. If we ignore multiple interactions be-
tween the target and the background heterogeneities in Fig. 1 (this is termed the Born approximation [24], and it is often
appropriate for heterogeneities sufficiently distant from the target), then the Fourier transform of the induced currents on
the target, due to the excitation gwðq; qe;xÞ discussed in Section 3.1, may be expressed as
îðu;xÞ �
Z 2p

0
d/iuð/i;u;xÞĝwð/i;qe;xÞ; ð11Þ
where we recall that ĝwð/i; qe;xÞ represents the amplitude of plane wave component propagating at angle /i within the
overall excitation field gwðq; qe;xÞ. In the subsequent analysis we assume the approximation in (11) to be accurate (thereby
assuming that the Born approximation is accurate), with this issue revisited in Section 3.6.

Let the
ffiffiffiffiffi
m
p
�

ffiffiffiffiffi
m
p

matrix U represent a sampled version of uð/i;/s;xÞ, with the columns representing
ffiffiffiffiffi
m
p

samples with
respect to /i 2 ½0;2p�, and the rows representing

ffiffiffiffiffi
m
p

samples with respect to /s 2 ½0;2p� (when ‘‘unwrapped” U represents
the vector u). From (11) a discretized form of the induced current (at

ffiffiffiffiffi
m
p

discrete u ¼ /s) may be expressed as
î � D/i
nT

qe
U; ð12Þ
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where now î is in the form of an
ffiffiffiffiffi
m
p

-dimensional complex row vector, and D/i
represents the sample rate of the angle

/i 2 ½0;2p�. Eq. (12) represents the induced target current in the spectral domain as a weighted sum of spectral currents, with
the weighting (complex vector) nqe

defined by the amplitude of
ffiffiffiffiffi
m
p

plane waves propagating at discrete angles /i 2 ½0;2p�.
Using (10), the fields scattered from the target situated within the presence of the heterogeneity, as observed at qo, is gi-

ven approximately as
vðqo;qe;xÞ �
koD/i

D/s

4p2 nT
qe

Ufqo
; ð13Þ
where fqo
represents nqo

with a shift of the angle u by p, commensurate with (10); vðqo; qe;xÞ is a complex number corre-
sponding to a measurement for a source at qe and observer at qo. A total of n such measurements (for n combinations of the
pair ðqe; qoÞÞ yields an n-dimensional complex CS vector v. The approximation in (13) is manifested by discretization with the
angles /i and /s, and it is exact in the limit D/i

! 0 and D/s
! 0.

3.4. Compressive sensing perspective

The matrix U defines the induced target spectral current uð/i;/sÞ at
ffiffiffiffiffi
m
p
�

ffiffiffiffiffi
m
p

discrete sets of angles ð/i;/sÞ, and rather
than viewing it as a matrix, it may be ‘‘unwrapped” to constitute an m-dimensional column vector u. Further, the linear rela-
tionship between the (single) compressive measurement vðqo; qe;xÞ and u, as defined by (13), may be expressed in terms of
the m� 1 dimensional vector rqo ;qe

, and therefore
vqo ;qe
¼ rT

qo ;qe
u ð14Þ
with vqo ;qe
corresponding to the complex measured data.

Assume n such compressive sensing measurements are performed, at n different pairs of source-observation positions
ðqo; qeÞ, then the compressive sensing measurements at frequency x may be expressed as
v ¼ Ru: ð15Þ
All discussions above have assumed operation at a single frequency x. The discussion may be extended to multiple frequen-
cies. Because of the assumed linear scattering, the different frequencies may be characterized independently, and therefore
the matrix R generalizes to a larger matrix; this matrix is block diagonal with each block corresponding to a particular fre-
quency and of the form discussed above. In this context, we may similarly generalize the single frequency vectors v and u by
concatenating such vectors associated with different frequencies.

The function uð/i;/s;xÞ is generally a smooth function of variables ð/i;/s;xÞ, which implies that a discrete cosine trans-
form (DCT) or wavelet (or other appropriate orthonormal) transform of the discretized uð/i;/s;xÞ should be sparse, implying
that the associated transform coefficients should have a large fraction of negligibly small coefficients.

Letting h represent the vector of m transform coefficients, and letting W represent the m�m basis in which u is sparse,
then u ¼ Wh and
v ¼ RWh ¼ Uh: ð16Þ
3.5. Properties of the matrix U and choice of W

We now carefully examine the properties of the rows of R in (16), these constituting the projection vectors manifested by
the two-way Green’s function projections. The projection associated with source point qe and observation point qo may be
represented via (13) as
vðqo;qeÞ �
koD

2

4p2

Xffiffiffimp
i¼1

Xffiffiffimp
k¼1

u½ðiD� /icÞ; ðkD� /scÞ�ĝðqo; ðpþ iD� /icÞÞĝðqe; ðkD� /scÞÞ; ð17Þ
where we assume that the sample rate in /i and /s is the same and set at D, and explicit dependence on x has been removed
to simplify notation; /ic and /sc represent centering offsets (constants) to align the angle-dependent function in discretized
form. Therefore, in the limit D! 0 the inner product between two different rows of R may be expressed as
hrqo1 ;qe1 ;rqo2 ;qe2 i /
Z 2p

0
d/iĝwð/i; qe1Þĝ�wð/i;qe2Þ

Z 2p

0
d/sĝwð/s;qo1Þĝ�wð/s;qo2Þ: ð18Þ
The expressions
R 2p

0 d/iĝwð/i; qe1Þĝ�wð/i; qe2Þ and
R 2p

0 d/sĝwð/s; qo1Þĝ�wð/s; qo2Þ correspond to time-reversal operators [25]. Spe-
cifically, the former corresponds to a line source excitation at qe2 radiating in the presence of the medium; the fields inside
the vacuum pocket (see Fig. 3) are then complex conjugated (time-reversed, in the time domain) and then radiated into the
medium, with observation at the point qe1. A similar phenomenon is associated with the other term in (18). To satisfy the
requirement that the rows of R be orthogonal, we should place the transmitted-receiver pairs ðqe; qoÞ such that when the
sensor positions are changed (each pair corresponding to one row in R), then the integrals in (18) should be relatively small
(relative to when (18) represents co-located sensors). The more complicated the propagation medium, the more tightly can
be the inter-sensor spacing, while still satisfying the required near-orthogonality properties of the rows of R.
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The above discussion demonstrates that if the sensors are situated properly, the required orthogonality (or near-orthog-
onality) properties of the CS projections is realized (recall Section 2.3). Further, if the sensor positions are selected randomly
(within the constraint that they satisfy near-orthogonality), the matrix R satisfies the desired properties (orthogonal rows)
for construction of a CS matrix U. The second issue concerns the mutual coherence (see (5)) between R and the basis W in
which u is sparse (or near-sparse) – this will dictate the number of different sensor positions that must be considered to con-
stitute v.

It is desirable to choose W such that any row in R is ‘‘spread out” in the orthonormal space defined by W [20], thereby
minimizing the mutual coherence between R and W. On the other hand, the W must be selected such that u is highly com-
pressible in this basis, such that S is as small as possible, since the number of required projections is also proportional to S. In
most wave propagation problems the Green’s functions in (18) tend to be spread out in a DCT basis, and therefore the DCT is
a good choice for W with the goal of minimizing the mutual coherence. Moreover, we have found that scattering from most
targets yields an angle-dependent signal u that is highly compressible in a DCT basis. Therefore, in the examples presented
below we typically let W correspond to the DCT basis.

3.6. Revisiting approximations

In Section 3.1 we commenced by stating the goal of recovering usð/i;/s;qs;xÞ for a large range of ð/i;/s;qs;xÞ, where
usð/i;/s;qs;xÞ represents the complex scattered field of a target situated in vacuum, as viewed in the far-zone at ð/s;qsÞ,
due to plane wave excitation at angle /i and frequency x. The compressive sensing analysis above sought to recover
uð/i;/s;xÞ, which represents the Fourier transform of the associated induced currents, at spectral angle /s. The desire for
usð/i;/s;qs;xÞ motivated assuming the Born approximation in (11). However, if the Born approximation is not valid, this
does not undermine the overarching compressive sensing analysis. It simply implies that the associated scattered fields also
include effects of the induced current introduced by interaction with the heterogeneous background. Hence, rather than
recovering the induced current of the target due to scattering within a vacuum, the effects of the heterogeneity are also in-
cluded (although, as indicated, these are often weak).
4. Accelerating existing scattering analysis tools

The discussion in the previous section demonstrated that near-orthogonal projection measurements of the type required
for CS may be manifested by exploiting multiple scattering in complex environments. While this may be of practical impor-
tance for inferring a target signature u based on scattering measurements, the significant complication is that one needs to
accurately know the projection matrix U, which implies knowing the media Green’s function. Ideas along these lines were
considered in [23], although there radiation problems were considered, rather than scattering. As demonstrated below, when
interested in computational electromagnetic scattering, one may explicitly design the matrix U, and therefore CS inversion
for the multi-static scattered fields is readily possible. As demonstrated below, this has the potential to significantly accel-
erate multi-static scattering calculations.

4.1. Setup of CS scattering computations

Most linear scattering analyses result in a matrix equation of the form [15]
Zi ¼ e; ð19Þ
where i represents a column vector of basis function coefficients to be solved for, and the column vector e represents the
known source, or excitation. If the analysis involves Nb basis function coefficients, then i and e are complex vectors of dimen-
sion Nb, and Z is an Nb � Nb complex matrix. When the dimensions of the target become large with respect to excitation
wavelength (most such analyses are performed one frequency or wavelength at a time), then the number of basis functions
Nb may become quite large. Therefore, the order N2

b computational cost associated with filling Z, and the cost of performing
the matrix inversion for i, become prohibitive. Once i is computed for a particular excitation e, the scattered fields observed
at different angles with respect to the target may be computed efficiently [15]. Therefore, the principal computational bot-
tleneck is manifested in forming and solving (19) for a particular angle of incidence. This computational challenge has moti-
vated development of techniques that allow (19) to be solved more efficiently than a naive direct solution, with the fast-
multipole method [17,16,18] constituting an important example. These latter techniques require OðNblogNbÞ computational
cost to solve for i, and OðNbÞ computational cost to solve for the associated scattered fields after i is obtained. Even with these
fast techniques, forming and solving (19) for the unknown i becomes computationally prohibitive as the size of the target
increases relative to wavelength, i.e. with increasing Nb.

The analysis in (19) may be viewed as a computational sensing experiment: given the excitation e, the goal is to perform a
computational ‘‘experiment” to estimate i, and from i the scattered field. Hence, the same ideas from compressive sensing,
which have typically been applied to physical experiments, may also be applied to computational experiments. One may
therefore ask the following question: Is it possible to employ CS to reduce the number of times we must solve (19), and,
based upon this reduced set of calculations, can the full multi-static scattering profile be recovered? In this context the
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‘‘sensing” part of CS corresponds to executing a numerical computation, and the objective is to employ CS to reduce the num-
ber of required computations.

To perform numerical scattering computations in a CS mode, one may perform relatively simple modifications to existing
numerical models that constitute and solve matrices of the form Zi ¼ e. Specifically, rather than assuming plane wave exci-
tation, the excitation e in (19) is composed of a linear combination of plane waves, with the weights on this superposition
(here) drawn iid from a Gaussian random variable, with zero mean and unit variance; based upon the CS theory summarized
in Section 2, one may also consider alternative random variables. In the computations presented in Section 5, the plane wave
incidence (excitation) angle he is sampled uniformly 128 times over 0	 6 he 6 180	, and each of the 128 plane waves is
weighted by a unique draw from the aforementioned random variable, and then all plane waves are superposed to constitute
one excitation e; importantly, using an e so constituted requires no more cost to solve (19) than if e corresponds to a plane
wave. Once i is computed for a given e, the scattered fields are also computed in a CS mode, corresponding to a weighted sum
of the scattered fields at different angles. In Section 5, 128 uniformly spaced scattering angles hs are considered over the
range 0	 6 hs 6 180	, with the weights again iid draws from the same random variable. Within the computational electro-
magnetic scattering engine, this weighted sum of fields from 128 scattering angles are computed at once, with no more com-
putational cost than observing the scattered fields at a single scattering angle hs. This process yields a single CS measurement
(a single component of v). Let Ne represent the number of different randomly constituted excitations v considered (defined
by different random variable draws), and for each we consider Ns random projections as a function of scattering angle, for a
total of Ne � Ns CS computations. Since, as discussed above, the solution in (19) for i is the computational bottleneck (at best
OðNblogNbÞ), the CS computations will be performed with the goal of minimizing Ne, recognizing that there is negligible addi-
tional cost associated with increasing Ns (recall that after i is computed, the scattered fields are computed with OðNbÞ
complexity).
4.2. Inversion for desired multi-static scattered fields

As a consequence of the aforementioned CS-based scattering computations, we constitute an n-dimensional complex vec-
tor v (where here n ¼ Ne � Ns, using notation from above). Our goal is to infer from v the scattered fields as a function of
discrete plane wave excitation angles and discrete observation angles, with the associated matrix of scattered fields repre-
sented as u. For the n-dimensional vector v, and the m elements in the matrix u, we desire an algorithm An : Cn ! Cm, as dis-
cussed in Section 2.

Let u be the desired multi-static scattering matrix at a given frequency, where one dimension represents the plane wave
excitation angle and the other dimension represents the scattering angle; there are assumed

ffiffiffiffiffi
m
p

angles in each of these
dimensions, where

ffiffiffiffiffi
m
p

is assumed to be an integer. Let the set of column vectors wk for k ¼ 1; . . . ;
ffiffiffiffiffi
m
p

represent an ortho-
normal basis in a vector space of dimension

ffiffiffiffiffi
m
p

, and therefore we may represent the matrix u as
u ¼
Xffiffiffimp
j¼1

Xffiffiffimp
k¼1

wjw
T
khj;k: ð20Þ
where hj;k represents the complex (scalar) weight on the two-dimensional orthonormal basis wjw
T
k . Our goal is to infer hj;k

from the compressive computations v, under the assumption that the m weights hj;k are sparse (most hj;k may be set to zero,
with negligible impact on the reconstruction of u). Note that each wjw

T
k corresponds to one (of m) column in the matrix W

discussed in Section 2.
We further let ge;l represent a vector of dimension

ffiffiffiffiffi
m
p

, corresponding to the lth set of randomly constituted weights on
the

ffiffiffiffiffi
m
p

plane wave excitation angles; the vector gs;k is similarly defined for the lth set of randomly constituted weights on
the

ffiffiffiffiffi
m
p

scattering angles. The lth compressive computation (lth component of v) may be expressed as
vðlÞ ¼ gT
e;lugs;l ¼

Xffiffiffimp
j¼1

Xffiffiffimp
k¼1

gT
e;lwjw

T
kgs;lhj;k: ð21Þ
Therefore, the complex vector of n such compressive computations may be expressed as
v ¼ Uh; ð22Þ
where h is an m-dimensional vector composed of the components fhj;kg, for j ¼ 1; . . . ;
ffiffiffiffiffi
m
p

and k ¼ 1; . . . ;
ffiffiffiffiffi
m
p

, and the lth row
of U is defined by the components fgT

e;lwjw
T
kgs;lg, again for j ¼ 1; . . . ;

ffiffiffiffiffi
m
p

and k ¼ 1; . . . ;
ffiffiffiffiffi
m
p

. Note that in many cases the com-
ponents fgT

e;lwjw
T
kgs;lgmay be computed very efficiently. For example, if wk for k ¼ 1; . . . ;

ffiffiffiffiffi
m
p

corresponds to a DCT or wavelet
basis, then the components fgT

e;lwjw
T
kgs;lgmay be computed efficiently using a fast Fourier or wavelet transform, respectively,

of the randomly constituted matrix ge;lgT
s;l.

The vector h is of dimension m, and we assume n CS computations, with n� m. Therefore, the matrix U is of dimension
n�m, and v ¼ Uh is an under-determined matrix equation. As indicated in Section 2, the algorithm An : Cn ! Cm addresses
this problem by imposing the constraint that the signal of interest u is compressible in the basis fwjw

T
kg for j ¼ 1; . . . ;

ffiffiffiffiffi
m
p

and
k ¼ 1; . . . ;

ffiffiffiffiffi
m
p

(the vector h is sparse). There have been many different algorithms developed to perform this regularized
inversion [9–11,7,12,13,?], and here we employ [13].
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4.3. Exploitation of reciprocity

As discussed above, u is an
ffiffiffiffiffi
m
p
�

ffiffiffiffiffi
m
p

complex matrix, where the ði; jÞ component uði; jÞ represents the far-zone scattered
field at angle j due to plane wave incidence at angle i. Due to reciprocity, we have uði; jÞ ¼ uðj; iÞ. In the compressive sensing
inversion discussed above we exploit the fact that u is compressible in an appropriate basis. We would like to also exploit the
fact that u has the aforementioned symmetry property. For arbitrary projections of the type discussed above, the kth CS-type
electromagnetic computation may be expressed in the form
Fig. 4.
dielectr
vðkÞ ¼
Xffiffiffimp
i¼1

Xffiffiffimp
j¼1

akði; jÞuði; jÞ; ð23Þ
where akði; jÞ represents the cumulative amplitude weighting uði; jÞ for projection k. As a consequence of reciprocity, we may
also express (23) as
vðkÞ ¼
Xffiffiffimp
i¼1

Xffiffiffimp
j¼1

âkði; jÞuði; jÞ; ð24Þ
where âkði; jÞ ¼ akði; jÞ þ Dði; jÞ and âkðj; iÞ ¼ akðj; iÞ � Dði; jÞ, for arbitrary Dði; jÞ. Therefore, we may perform n CS-based electro-
magnetic computations fvðkÞgk¼1;n, with associated projection weights aði; jÞ as in (23), and for arbitrary Dði; jÞ these same
computations may be used to represent an additional n computations of the form (24). The fact that both (23) and (24) are
solved simultaneously implicitly imposes the known reciprocity associated with u. In all results presented below, this concept
is employed, and the Dði; jÞ are generated as i.i.d. draws from the normal distribution Nð0;1Þ. Therefore, when discussing n
computations below for a given analysis, a total of 2n effective computations were employed when performing inversion.

5. Example results

To demonstrate the concepts elucidated above we consider the numerical analysis of electromagnetic scattering from the
target in Fig. 4. Scattering from this target is analyzed using the multi-level fast-multipole method (MLFMM) technique dis-
cussed in [18]. To simplify the analysis, the calculations were performed at a fixed azimuthal angle /i ¼ /s ¼ 0	, and the inci-
dence and scattering angles were varied from 0	 6 he 6 180	 and 0	 6 hs 6 180	. The MLFMM code was run with plane wave
incidence to sample he 128 times, and the far-zone scattered fields were computed at 128 angles hs; these scattered fields
provide a reference solution for the CS-based computations. The real and imaginary parts of the normalized scattered fields
are depicted in Fig. 6, where the fields are normalized with respect to expð�jkorÞ=r, where r is the range from the target cen-
ter to the (distant) receiver.

As a brief aside, we provide justification now for choosing the DCT as the basis W in the CS analysis presented here. In
Fig. 5, we compare the sparseness with which the data in Fig. 4 are rendered for different W. In Fig. 5 are shown the ordered
amplitudes when W corresponds to a discrete Fourier transform, a Harr wavelet [1], and a DCT. For the scattering data con-
sidered, the DCT provides the sparsest representation, and therefore this has been selected for all CS results presented here.
However, as discussed in the Conclusions, further research is of interest concerning the selection of W for scattering compu-
tations and measurements.

In Figs. 7 and 8 are shown, respectively, the CS-reconstructed real and imaginary parts of the scattered fields, for which
one may compare to the reference solution in Fig. 6. In these computations the number of randomly constituted excitations
was fixed at Ne ¼ 16, and for each excitation the number of different random projections of the scattered fields was
Ns ¼ 16;Ns ¼ 32 and Ns ¼ 64. The number of complex basis function coefficients was Nb ¼ 20016 (this is a relatively small
number of unknowns, selected for efficient computation of the reference solution in Fig. 6). While the results for Ns ¼ 8 (not
shown) are reasonably good, they are substantially worse than those in Figs. 7 and 8. We observe from Figs. 7 and 8 that the
CS-based MLFMM computations and associated CS reconstructions are in good agreement with the ‘‘truth” in Fig. 6 (a quan-
titative comparison is provided below).
Finite dielectric cylindrical target considered in three-dimensional fast-multipole electromagnetic scattering calculation. The target is a lossless
ic with dielectric constant �r ¼ 2.



Fig. 6. Real (left) and imaginary (right) parts of the normalized scattered fields, as computed via a reference MLFMM [18] computation, with plane wave
excitation and the scattered fields observed in the far-zone, as a function of scattering angle hs . The scattered fields are normalized with respect to
expð�jkorÞ=r.

Fig. 7. Real part of the normalized scattered fields, as estimated by compressive sensing. The CS calculations were performed with Ne ¼ 16 random
excitations, and the number of random CS scattering computations considered is Ns ¼ 16 (left), Ns ¼ 32 (center) and Ns ¼ 64 (right). The scattered fields are
normalized with respect to expð�jkorÞ=r.

Fig. 5. Comparison of the ordered basis function weights (magnitude) for the scattering data considered in Fig. 6, for W defined by a discrete Fourier,
discrete cosine and Harr wavelet basis.
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To provide a comparison of the accuracy of the CS reconstructions, in Fig. 9 is shown the real part of the normalized scat-
tered field, for plane wave excitation at Ne ¼ 16 angles over 0	 6 he 6 180	, and with the scattered field observed at Ns dif-
ferent discrete angles (as in conventional scattering computations) over 0	 6 hs 6 180	; as in the CS computations, we
consider Ns ¼ 16; Ns ¼ 32 and Ns ¼ 64. The computational cost for this analysis is the same as that associated with the
CS-based analysis in Fig. 7. Although not shown here, for brevity, the imaginary component of these scattered fields, based
on linear interpolation of the uniformly sampled results in he and hs, have a similar level of accuracy when compared to the



Fig. 8. Imaginary part of the normalized scattered fields, as estimated by compressive sensing. The CS calculations were performed with Ne ¼ 16 random
excitations, and the number of random CS scattering computations considered is Ns ¼ 16 (left), Ns ¼ 32 (center) and Ns ¼ 64 (right). The scattered fields are
normalized with respect to expð�jkorÞ=r.

Fig. 9. Normalized scattered fields (real part) computed using random Ne ¼ 16 plane wave incident angles uniformly sampled over the range
0	 6 he 6 180	 , and the scattered fields are uniformly sampled at Ns ¼ 16 (left), Ns ¼ 32 (center) and Ns ¼ 64 (right) scattering angles, over 0	 6 he 6 180	 .
Linear interpolation is used to estimate the scattered fields at angles he and hs for which the numerical scattered fields were not explicitly analyzed.

Table 1
The error kIest � Iref k2=kIref k2, where Iest is the estimated ðhe; hsÞ-dependent scattered field and Iref is the associated reference solution. The results for the error on
the real and imaginary part of the scattered fields are denoted ‘‘real, imaginary”.

Ns ¼ 16 Ns ¼ 32 Ns ¼ 64

Uniform sampling 0.51, 0.35 0.35, 0.23 0.31, 0.20
Gaussian CS 0.24, 0.21 0.16, 0.11 0.12, 0.10
Bernoulli CS 0.41, 0.28 0.26, 0.19 0.17, 0.13
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CS-based results in Fig. 8. The computation of each CS analysis, for a given random projection on excitation and on receive, is
exactly of the same complexity as when plane wave excitation is considered, and the scattered fields are observed at a single
angle of observation (the CS inversion is performed in seconds in Matlab, and therefore this part of the analysis is a tiny frac-
tion of the time required for the MLFMM scattering analysis).

To provide a quantitative measure of the difference between the CS-computed and traditionally computed (plane wave
excitation, and observation at discrete scattering angles), we consider the error kIest � Iref k2=kIrefk2, where Iest is the estimated
ðhe; hsÞ dependent scattered field (complex) and Iref is the associated reference solution depicted in Fig. 6. The Iest is estimated
in two different ways, each requiring the same computational cost: (i) the CS-based approach with results reflected in Figs. 7
and 8, and (ii) the ‘‘traditional” approach with uniform sampling in ðhe; hsÞwith results depicted (real part) in Fig. 9. In Table 1
these errors are shown, for Ne ¼ 16 source excitations, and for Ns ¼ 16;Ns ¼ 32 and Ns ¼ 64. It is observed that the CS-based
results are significantly more accurate than the corresponding uniform-sampled results. To realize accuracy commensurate
with the CS solution, the uniformly sampled results require one to consider Ne ¼ 32 excitations, which more than doubles
the computational cost.

In Table 1, we present two sets of CS results. The Gaussian CS results employ projection vectors defined by draws from a
Gaussian distribution, as utilized in all other examples considered above. As a comparison, we also consider projection vec-
tors that have amplitudes 
1, where both values are drawn with probability 0.5 (Bernoulli). The latter projections yield CS
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results that are generally worse than the Gaussian-defined projections, particularly for a relatively small number of compu-
tations. This is attributed to the fact that the 
1 alphabet is clearly more restrictive relative to draws from a Gaussian dis-
tribution. Since there is no computational difference in employing Gaussian or Bernoulli-defined projections, the former is
preferred (based on all examples we have considered thus far).

In the traditional uniform-sampled results, linear interpolation was used to extrapolate to angles he and hs not explicitly
considered via the MLFMM analysis. Therefore, it is possible that the results of the uniform-sampled analysis may be im-
proved by considering a more-sophisticated regression model (e.g. splines or a polynomial model). Therefore, the CS results
considered here may be viewed from two perspectives: (i) as compared to simple linear interpolation on a uniformly sam-
pled lattice in he and hs, the CS results yield improved accuracy with the same computational cost and (ii) the CS analysis may
be viewed as integrating the scattering computations with the regression, with the CS inversion providing a smooth and
accurate representation of the scattered fields for a finely sampled lattice in he and hs.

6. Conclusions

Compressive sensing has been examined as a framework for efficiently performing scattering computations. In the con-
text of a numerical scattering analysis, one typically considers plane wave excitation, with the scattered fields computed in
the far field, one angle at a time. From the perspective of CS, the computations are performed using an excitation that is a
random combination of plane waves, and the scattered fields are viewed simultaneously at all angles, with the angle-depen-
dent scattered fields projected onto a random vector. The computational cost of a CS analysis is exactly the same as that of a
traditional analysis, for which fixed angles of incidence and scattering are considered. The results presented demonstrated
that at minimum the CS computations may be viewed as combining the scattering analysis with a regression model, to yield
a smooth and highly accurate representation of the scattered fields as a function of angle, with a resolution far superior than
that associated with uniform sampling at the same computational cost. The results also demonstrated that the CS-based re-
sults are more accurate than those using uniform sampling and simple linear interpolation. We also demonstrated that phys-
ical CS measurements of this type may be performed by exploiting complex propagation in a complex media. However, in
this setting one requires the media Green’s function to perform CS inversion.

The work presented here constitutes an introduction of CS to the problem of performing a scattering analysis, and there-
fore there are more open questions for future research than there are problems solved here. As a sample of open research
issues, we discuss the following:

In the context of the MLFMM scattering computations, the CS matrix U was constituted by drawing samples from an
underlying random variable. While this framework has been demonstrated to give good results, and is blessed with good
theoretical properties [8], it has recently been demonstrated that if the underlying signal u is structured, improved perfor-
mance may be achieved if the U matrix is constituted adaptively, sequentially [13]. Noting the relatively highly structured
form of angle-dependent scattering measurements, it is anticipated that in this context the number of required CS-based
MLFMM computations may be further reduced with adaptive formation of U (rather than constituting the Ns excitations ran-
domly, they may be constituted adaptively, with a goal of accelerating CS convergence [13]).

In the CS analysis one must choose a basis or frame W in which to operate, and it is desirable to pick a W for which the
signal of interest is sparsely rendered. Although an exhaustive analysis was not performed, for the problem of interest here it
was determined that the discrete cosine transform (DCT) yielded better sparseness than a wavelet basis; this is attributed to
the fact that often the angle-dependent scattered fields constitute a very smooth function, and therefore the localizing prop-
erties of wavelets are less necessary. An area of interest involves an investigation into a W that is best suited for the scatter-
ing analysis of interest; in this context W may be complex.

Finally, to simplify the analysis presented here, we considered CS computations at a single frequency, although the basic
construct may be extended to estimating the angle and frequency dependent properties of the scattered fields. Moreover,
many scattering techniques are implemented in the time domain, such as the FDTD method applied in a subset of the exam-
ples considered here. It is of interest to examine how the CS formulation may be extended to time domain scattering
measurements.
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